Mekanika Rekayasa
1. Mekanika rekayasa
Mekanika teknik atau dikenal juga sebagai
mekanika rekayasa atau analisa struktur merupakan bidang ilmu utama yang
dipelajari di ilmu teknik sipil. Pokok utama dari ilmu tersebut adalah
mempelajari perilaku struktur terhadap beban yang bekerja padanya. Perilaku
struktur tersebut umumnya adalah lendutan dan gaya-gaya (gaya reaksi dan gaya
internal).
Dalam mempelajari perilaku struktur maka hal-hal
yang banyak dibicarakan adalah:
- Stabilitas
- keseimbangan gaya
- kompatibilitas antara deformasi dan jenis
tumpuannnya elastisitas
Dengan mengetahui gaya-gaya dan lendutan yang
terjadi maka selanjutnya struktur tersebut dapat direncanakan atau
diproporsikan dimensinya berdasarkan material yang digunakan sehingga aman dan
nyaman (lendutannya tidak berlebihan) dalam menerima beban tersebut.
2. Gaya luar
Adalah muatan dan reaksi yang menciptakan kestabilan atau keseimbangan
konstruksi. Muatan yang membebani suatu kontruksi akan dirambatkan oleh
kontruksi ke dalam tanah melalui pondasi. Gaya-gaya dari tanah yang memberikan
perlawanan terhadap gaya rambat tersebut dinamakan reaksi.
·
Muatan adalah beban yang membebani suatu konstruksi
baik berupa berat kendaraan, kekuatan angin, dan berat
angin.
Muatan-muatan tersebut mempunyai besaran, arah,
dan garis kerja, misalnya:
- Angin bekerja tegak lurus bidang yang menentangnya, dan
diperhitungkan misalnya 40 kN/m2, arahnya umum mendatar.
- Berat kendaraan, merupakan muatan titik yang mempunyai
arh gaya tegak lurus bidang singgung roda, dengan besaran misalnya 5 tN.
- Daya air, bekerja tegak lurus dinding di mana ada air,
besarnya daya air dihitung secara hidrostatis, makin dalam makin besar dayanya.
Berdasarkan pengertian tersebut
muatan-muatan dapat dibedakan atas beberapa kelompok menurut cara kerjanya.
1. Ada muatan yang
bekerjanya sementara dan ada pula yang terus-menerus (permanen). Mutan yang
dimaksud adalah:
1.1. Muatan mati, yaitu
muatan tetap pada konstruksi yang tidak dapat dipindahkan atau tidak habis.
Misalnya:
Ø Berat sendiri konstruksi beton misalnya 2200 kN/m3
, dan
Ø Berat tegel pada pelat lantai misalnya 72 kN/m2.
2. Ada muatan yang garis
kerjanya dianggap suatu titik, ada yang tersebar. Muatan yang dimaksud adalah:
2.1. Muatan titik atau muatan
terpusat. Yaitu muatan yang garis kerjanya dianggap bekerja melalui satu titik,
misalnya:
Ø Berat seseorang melalui
kaki misalnya 60 kN dan
Ø Berat kolom pada pondasi
misalnya 5000 kN;
Muatan terbagi ini dapat
dijabarkan sebagai berikut:
Ø Muatan terbagi rata, yaitu muatan terbagi yang
dianggap sama pada setiap satuan luas.
Ø Muatan terbagi tidak rata teratur, yaitu muatan
yang terbagi tidak sama berat untuk setiap satuan luas.
3. Muatan momen, yaitu
muatan momen akibat dari muatan titik pada konstruksi sandaran. Gaya horizontal
pada sandaran menyebabkan momen pada balok.
4. Muatan puntir, suatu gaya
nonkoplanar mungkin bekerja pada suatu balok sehingga menimbulkan suatu muatan
puntir, namun masih pada batas struktur statik tertentu.
5. Dalam kehiduypan
sehari-hari sering dijumpai muatan yang bekerjanya tidak langsung pada
konstruksi, seperti penutup atap ditumpu oleh gording dan tidak langsung pada
kuda-kuda.
·
Perletakan
Perletakan adalah suatu konstruksi direncanakan
untuk suatau keperluan tertentu.
Tugas utama suatu konstruksi adalah mengumpulkan
gaya akibat muatan yang bekerja padanya dan meneruskannya ke bumi. Untuk
melaksanakan tugasnya dengan baik maka konstruksi harus berdiri dengan kokoh.
Rosenthal menyatakan bahwa semua beban diteruskan ke bumi melalui
sesingkat-singkatnya.
Kondisi yang harus
dipertimbangkan?
Pertama yang harus dipertimbangkan adalah stabilitas
konstruksi. Suatu konstruksi akan stabil bila konstruksi diletakkan di atas
pondasi yang baik. Pondasi akan melawan gaya aksi yang diakibatkan oleh muatan
yang diteruskan oleh konstruksi kepada pondasi. Gaya lawan yang ditimbulkan
pada pondasi disebut: Reaksi. Dalam kasus ini pondasi digambarkan
sebagai perletakan. Berikut ini diuraikan tiga jenis perletakan yang
merupakan jenis perletakan yang umum digunakan. Yaitu perletakan yang dapat
menahan momen, gaya vertikal dan gaya horizontal.dan ada maca-macam perletakan
yang perlu dipahami yaitu:
Ø Perletakan sendi, yaitu perletakan terdiri dari
poros dan lubang sendi. Pada perletakan demikian dianggap sendinya licin
sempurna, sehingga gaya singgung antara poros dan sendi tetap normal terhadap
bidang singgung, dan arah gaya ini akan melalui pusat poros.
Ø Perletakan geser, yaitu perletakan yang selalu
memiliki lubang sendi. Apabila poros ini licin sempurna maka poros ini hanya
dapat meneruskan gaya yang tegak lurus bidang singgung di mana poros ini
diletakkan.
Ø Perletakan pendel, yaitu suatu perletakan yang
titik tangkap dan garis kerjanya diketahui.
Ø Perletakan jepit, perletakan ini seolah-olah
dibuat dari balok yang ditanamkan pada perletakannya, demikian sehingga mampu
menahan gaya-gaya maupun momen dan bahkan dapat menahan torsi.
3. Gaya Dalam
Gaya dalam adalah gaya rambat yang diimbangi oleh
gaya yang berasal dari bahan konstruksi, berupa gaya lawan, dari konstruksi.
Analisis hitungan gaya dalam
dan urutan hitungan ini dapat diuraikan secara singkat sebagai berikut:
1. Menetapkan dan
menyederhanakan konstruksi menjadi suatu sistem yang memenuhi syarat yang
diminta.
2. Menetapkan muatan yang
bekerja pada konstruksi ini.
3. Menghitung keseimbangan
luar.
4. Menghitung keseimbangan
dalam.
5. Memeriksa kembali semua
hitungan.
Dengan syarat demikian konstruksi yang dibahas
akan digambarkan sebagai suatu garis sesuai dengan sumbu konstruksi, yang
selanjutnya disebut: Struktur
Misalkan pada sebuah balok dijepit salah satu
ujungnya dan dibebani oleh gaya P seperti pada gambar 3.2.
gambar 3.2
maka dapat diketahui
dalam konstruksi tersebut timbul gaya dalam.
Apabila konstruksi dalam keadaan
seimbang, maka pada suatu titik X sejauh x dari B akan timbul gaya dalam yang
mengimbangi P.
Gaya dalam yang
mengimbangi gaya aksi ini tentunya bekerja sepanjang sumbu batang sama besar
dan mengarah berlawanan dengan gaya aksi ini. Gaya dalam ini disebut Gaya
normal (N).
Bila gaya aksi berbalik
arah maka berbalik pula arah gaya normalnya. Nilai gaya normal di titik X ini
dinyatakan sebagai Nx.
Gambar 3.3
Gambar 3.3 menggambarkan
gaya P yang merambat sampai titik X dan menimbulkan gaya sebesar P’ dan M’.
Apabila struktur dalam keadaan seimbang maka tiap-tiap bagian harus pula dalam
keadaan seimbang. Selanjutnya gaya P’dan M’ harus pula diimbangi oeh suatu gaya
dalam yang sama besar dan berlawanan arah, yaitu gaya dalam Lx dan Mx. Gaya
tersebut merupakan sumbangan dari bagian XA yang mengimbangi P’M’.
Gaya dalam yang tegak
lurus sumbu disebut Gaya lintang, disingkat LX dan momen yang menahan lentur
pada bagian ini disebut Momen Lentur disingkat MX.
Dari uraian di atas,
gaya-gaya dalam dibedakan menjadi tiga :
- Gaya normal (N), yaitu gaya dalam yang bekerja searah sumbu balok.
- Gaya lintang (L), yaitu gaya dalam yang bekerja tegak lurus sumbu balok.
- Momen lentur (F), yaitu gaya dalam yang menahan lemtur sumbu balok
Gaya dalam bekerja pada
titik berat sepanjang garis struktur. Untuk menghitung gaya dalam ini
diperlukan pengertian tanda. Menurut perjanjian tanda yang lazim digunakan di
dalam Mekanika Rekayasa seperti terlukis pada gambar 4.3.
Gaya Normal diberi tanda
positif (+) apabila gaya itu cenderung menimbulkan gaya tarik pada batang dan
diberi tanda negatif (-) apabila gaya itu cenderung menimbulkan sifat desak.
Gaya lintang diberi tanda
positif (+) apabila gaya itu cenderung menimbulkan patah dan putaran jarum jam,
dan diberikan tanda negatif (-) apabila gaya itu cenderung menimbulkan
kebalikannya.
Momen lentur diberi tanda
positif (+) apabila gaya itu menyebabkan sumbu batang cekung ke atas dan diberi
tanda negatif (-) apabila gaya itu menyebabkan sumbu batang cekung ke bawah.
4. Hubungan antara
Muatan, Gaya Lintang, dan Momen
Untuk membahas pertanyaan tersebut, harus mempelajari
suatu struktur sederhana yang dibebani muatan penuh terbagi rata.
Gaya dalam di m dapat dihitung sebesar:
Mm = Va.x – ½ qx2 =
½ qlx – ½ qx2...................(1.1)
Lm = ½ ql – qx............................(1.2)
Gaya dalam di n dapat dihitung sebesar:
Mn = Va (x + dx) – 1/2q (x + dx)2............(1.4)
Ln = ½ qL – q (x + dx)............................(1.5)
Persamaan (1.4) dan (1.5) tersebut dapat ditulis
Pula sebagai:
Mn = Mm + dM =
Mm + Lm.dx
– q.dx.1/2 dx..............(1.6)
Ln = Lm + dL = Lm –
q.dx........................(1.7)
Persamaan tersebut setelah
diselesaikan didapat:
dM/dx = Lx..............................................(1.8)
dL/dx = - q...............................................(1.9)
Kiranya perlu ditambahkan
bahwa perubahan nilai beban ditiap titik adalah tetap, yang berarti dq/dx = 0
Dengan demikian memang terbukti adanya hubungan antara
muatan, gaya lintang dan momen. Hubungan itu tampak pula pada
persamaan-persamaan di atas, yaitu: gaya lintang merupakan fungsi turunan dari
momen , dan beban merupakan fungsi turunan dari gaya lintang, atau sebaliknya
gaya lintang merupakan jumlah integrasi dari beban, dan momen merupakan jumlah
integrasi dari gaya lintang.
Satuan Konversi untuk Pembebanan
1 mpa = 1000 kpa = 1 ksi
1 mpa = 1 n/mm2 = 10 kg/cm2 = 100t/m2
1 mpa =100t/m2 = 100.000kg/m2
1 kpa = 100kg/m2
1 mpa = 1000 kpa
1 kpa =1kn /m2 1kn =100kg/m2
fc beton ( mutu beton) missal k 225 kg/cm2 dibagi 10 = 22,5 mpa
fy main ( mutu baja pokok ) = 400 mpa = 40.000t/m2
fy sec ( mutu baja sengakang = 240 mpa = 24000t/m)
1 mpa = 1000 kpa = 1 ksi
1 mpa = 1 n/mm2 = 10 kg/cm2 = 100t/m2
1 mpa =100t/m2 = 100.000kg/m2
1 kpa = 100kg/m2
1 mpa = 1000 kpa
1 kpa =1kn /m2 1kn =100kg/m2
fc beton ( mutu beton) missal k 225 kg/cm2 dibagi 10 = 22,5 mpa
fy main ( mutu baja pokok ) = 400 mpa = 40.000t/m2
fy sec ( mutu baja sengakang = 240 mpa = 24000t/m)
Satuan Konversi
untuk Gaya
N
= 0.001 kN
[KN]
= 1 kN
MN
= 1000 kN
lb
(pon) = 0044482 kN
klb (kilopon) = 4.4482 kN